New Cyclophane Hosts: Polyether-Bridged Hexaoxacyclophanes

Gary R. Bower, Alexandra M. Z. Slawin, and David J. Williams
Department of Chemistry, Imperial College, London SW7 2AY
George R. Brown
Chemistry Department, ICI Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire SK10 $4 T G$
Surinder S. Chana and J. Fraser Stoddart
Department of Chemistry, The University, Sheffield S3 7HF

The polyether-bridged hexaoxacyclophane (3) has been shown by X-ray crystallography to include a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule within its molecular cavity.

The conformational properties of the free hexaoxacyclophane (1) displayed ${ }^{1}$ in the solid state encouraged us to progress to the incorporation of polyether ribbons between the two m-xylylene rings in (1) in order to increase the rigidity of the cyclophane unit and introduce a potential alkali-metal cation binding site. In this communication, we (i) report on the synthesis of the polyether-bridged hexaoxacyclophanes (2) and (3), and (ii) illustrate by X-ray crystallography how (3) includes a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule within its molecular cavity in the solid state.
As a result of separate reactions $\left[\mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{MeCN} /\right.$ reflux/ $24-28 \mathrm{~h}]$ of bis(4-hydroxyphenyl) ether ${ }^{2}$ with 1,8 -bis[2,6-bis(bromomethyl)phenoxy]-3,6-dioxaoctane ${ }^{3}$ and 1,11-bis(2,6-
bis(bromomethyl)phenoxy)-3,6,9-trioxaundecane ${ }^{3}$ respectively (2) $\left[3 \%\right.$, m.p. $239-242{ }^{\circ} \mathrm{C}, \mathrm{M}, 754$ (f.a.b.m.s.); $\delta\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3.28-$ $3.30(8 \mathrm{H}, \mathrm{s}$ and m$), 3.78-383(4 \mathrm{H}, \mathrm{m}), 5.05(8 \mathrm{H}, \mathrm{s}), 6.78-7.01$ $\left(16 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right), 7.22(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 7.50(4 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz})$ was isolated after preparative t.l.c. $\left[\mathrm{SiO}_{2} / \mathrm{CHCl}_{3}-\mathrm{EtOAc}(20: 1\right.$, v / v) $]$ and (3) $\left[7 \%\right.$, m.p. $257-260^{\circ} \mathrm{C}, M, 798$ (f.a.b.m.s.), $\delta\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3.50-3.57(8 \mathrm{H}, \mathrm{m}), 3.63-3.66(4 \mathrm{H}, \mathrm{m}), 3.82-3.87$ $(4 \mathrm{H}, \mathrm{m}), 5.14(8 \mathrm{H}, \mathrm{s}), 6.74-7.03\left(16 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right), 7.21(2 \mathrm{H}, \mathrm{t}, J 7.5$ $\mathrm{Hz})$, and $7.52(4 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz})$ was isolated after column chromatography $\left[\mathrm{SiO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O} \quad(20: 1, \mathrm{v} / \mathrm{v})\right]$. Single crystals of (3) suitable for X-ray crystallography were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane.

New Cyclophane Hosts: A Hexaoxacyclophane

Figure 1. Diagrammatic representation of a potential bireceptor molecule for alkali metal phenoxides

(1)

Figure 2. Space-filling representation of the solid state structure of (1): the oxygen atoms are shown in red

Figure 3. The solid-state structure of (1) giving the atomic numbering scheme and selected torsional angles: the carbon and oxygen atoms are shown in grey and red, respectively. Note that there is a non-linearity of 9° between the $\mathrm{O}(7)-\mathrm{C}(8)$ and $\mathrm{C}(11)-\mathrm{O}(12)$ bonds emanating from ring E (and from ring в)

Figure 4. The packing of adjacent molecules (red and black) of (1) in the crystal. Aromatic ring centroid-centroid distances (\AA), angles $\left({ }^{\circ}\right)$ between their mean planes: $\mathrm{AA}^{\prime}, 4.77,20 ; \mathrm{BB}^{\prime}, 3.83,6 ; \mathrm{FF}^{\prime}, 4.70,19$

Figure 5. The solid-state structure of (1) $\cdot \mathrm{C}_{6} \mathrm{H}_{6}$ giving the aromatic numbering scheme and selected torsional angles: the carbon and oxygen atoms are shown in grey and red, respectively

Figure 6. Space-filling representation of the solid-state structure of $(\mathbf{1}) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ corresponding to the view of the framework representation illustrated in Figure 5: the oxygen atoms are shown in red and the encapsulated benzene molecule is highlighted in grey

Figure 7. The packing of adjacent supermolecules (red and black) of (1)- $\mathrm{C}_{6} \mathrm{H}_{6}$ in the crystal

New Cyclophane Hosts: Polyether-Bridged Hexaoxacyclophanes

Formulae

(1) $\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{H} \quad$ (4) $\mathrm{X}=\mathrm{CMe}_{2} ; \mathrm{Y}=\mathrm{NO}_{2}$

(2) $n=1$
(3) $n=2$

Figure 1. The solid-state structure of (3)•CH2 Cl_{2} giving the atomic numbering scheme and selected torsional angles: the carbon, oxygen, and chlorine atoms are shown in grey, red and green, respectively. The angles between the $O(1)-C(2)$ and $C(5)-O(4)$ and $O(25)-C(25)$ and $C(22)-O(21)$ bonds are 8 and 2°, respectively

Figure 2. Space-filling representation of the solid state structure of (3) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ corresponding to the view of the framework representation illustrate in Figure 1: the oxygen and chlorine atoms are shown in red and green, respectively

Figure 3. Space-filling representation of the solid state structure of (3) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ looking into the molecular cave of (1): the oxygen and chlorine atom: are shown in red and green, respectively

The X-ray crystal structure* of (3) reveals (Figures 1 and 2) that the conformation of its hexaoxacyclophane unit changes from that adopted ${ }^{1}$ in (1). The aromatic rings A and D are no longer parallel but they are folded in towards each other and so partially fill the macrocyclic ring aperture that was present ${ }^{1}$ in (1). However, the bridging polyether ribbon, together with the aromatic rings F, A, and B form (Figure 3) the boundary to a sizable molecular cave in which a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule ${ }^{4}$ resides. \dagger The closest contacts to this encapsulated substrate are between one of the CH_{2} protons [on $\mathrm{C}(49)$] of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the two oxygen atoms, $\mathrm{O}(44)$ and $\mathrm{O}(40)$, of the bridging polyether ribbon in (3), namely 2.51 and $2.55 \AA$, respectively \ddagger In common with (1), aromatic rings A and B, and D and E, of the two diphenyl ether units are approximately orthogonal to each other. Again, in both cases, these geometries are produced by two non-zero torsional components about the $\mathrm{O}(4)-\mathrm{C}(5), \mathrm{O}(4)-\mathrm{C}(8)$, and $\mathrm{O}(25)-\mathrm{C}(25), \mathrm{O}(25)-\mathrm{C}(28)$ bonds, respectively (Figure 1). Approximate coplanarity ${ }^{5}$ of the methyleneoxy units with the aromatic rings A, B and D is retained; however, the $C(21)-O(21)$ bond is rotated by 58° out-of-the-plane of aromatic ring E . The conformation of the polyether ribbon linking $C(40)$ with $C(20)$ has the torsional angle sequence $g^{-} g^{+} g^{-} a$ for the four contiguous $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ units.

The solubility properties of (2) and (3) are very different: whilst (2) is virtually insoluble in most organic solvents, (3) is readily soluble in, for example, CHCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. As in the case of (1), ${ }^{1}$ when 1 molar equivalent of potassium p nitrophenolate was added to a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution (ca. 6 mm) of (3), insignificantly small displacements (ca. 0.03 p.p.m.) in the
${ }^{*}$ Crystal data for compound (3). $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{O}_{11} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=883.8$, triclinic, $a=9.524(3), b=14.953(5), c=17.278(7) \AA, \alpha=112.40(3)$, $\beta=89.83(3), \gamma=98.53(3)^{\circ}, U=2246 \AA^{3}$, space group $P \overline{1}, Z=2$, $D_{\mathrm{c}}=1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=18 \mathrm{~cm}^{-1}$. The structure was solved by direct methods and refined anisotropically to give $R=0.066, R_{w}=$ 0.066 for 3985 independent observed reflections $\left[\left|F_{0}\right| \geqslant 3 \sigma\left(\left|F_{0}\right|\right)\right.$, $\left.\theta \leqslant 55^{\circ}\right]$. Data were measured on a Nicolet R3m diffractometer with $\mathrm{Cu}-K_{\alpha}$ radiation (graphite monochromator) using ω-scans. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See 'Instructions for Authors (1989),' J. Chem. Soc., Perkin Trans. 1, 1989, Issue 1.
\dagger When a tetrahydrofuran (THF) solution of (3) was allowed to evaporate, single crystals containing THF and suitable for X-ray crystallography were isolated. The results of this investigation will be reported at a later date.
\ddagger Note, however, that there are no significant intermolecular short contacts between symmetry related (3) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecular complexes. § Interestingly, when attempts were made to record the negative-ion f.a.b.m.s. of (3): potassium p-nitrophenolate in m-nitrobenzyl alcohol (m NBA) as the matrix, a peak was observed at $m / z 951$ for [$M+$ $m \mathrm{NBA}]^{-}$. This observation suggests that (3) is complexing with m NBA under the conditions of the f.a.b. experiment, i.e. m NBA is present in large excess.
chemical shifts of the protons on the anion relative to those for the same protons in the free potassium p-nitrophenolate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were observed.§ Dynamic ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ indicates that (3) undergoes a conformational inversion process as a result of passage of the polyether ribbon through the middle of the cyclophane ($c f$. ref. 6). The singlet for the benzylic methylene protons in (3) at room temperature separates out into an ab system below $-83^{\circ} \mathrm{C}$. The barrier to conformational inversion was increased by only $2.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ from 36.7 to $39.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ on addition of 1 molar equivalent of potassium p-nitrophenolate to (3). And so we conclude that any complexation is very small and that it is going to be necessary to add a second polyether ribbon (i.e. form a macrocyclic polyether) across the floor of the cyclophane.

Acknowledgements

We thank A.F.R.C. (A. M. Z.) and S.E.R.C. and I.C.I. Pharmaceuticals (S. S. C.) for their support of this research and the Leverhulme Trust for the award of a Research Fellowship to J. F. S.

References

1 G. R. Brown, S. S. Chana, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, preceding communication.
2 G. Koga, M. Yasaka, and Y. Nakano, Org. Prep. Proced., 1969, 1(3), 205.

3 D. R. Alston, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, and R. Zarzycki, Angew: Chem., Int. Ed. Engl., 1987, 26, 692.
4 For other examples of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (and CHCl_{3}) molecules included within the cavities of synthetic neutral host molecules, see F. Vögtle, H. Puff, E. Friedrichs, and W. M. Müller, J. Chem. Soc., Chem. Commun., 1983, 1398; F. Vögtle and W. M. Müller, J. Incl. Phenom., 1984, 1, 369; I. Tabushi, K. Yamamura, H. Nonoguchi, K. Hirotsu, and T. Higuchi, J. Am. Chem. Soc., 1984, 106, 2621; J. Canceill, M. Cesario, A. Collet, J. Guilhem, and C. Pascard, J. Chem. Soc., Chem. Commun., 1985, 361; J. Canceill, M. Cesario, A. Collet, J. Guilhem, and C. Pascard, ibid., p. 361; J. Canceill, M. Cesario, A. Collet, J. Guilhem, C. Riche, and C. Pascard, ibid., 1986, 339; J. Canceill, L. Lacombe, and A. Collet, J. Am. Chem. Soc., 1986, 104, 4230; A. W. Coleman, S. G. Bott, and J. L. Atwood, J. Incl. Phenom., 1986, 4, 247; I. Goldberg and K. M. Doxsee, ibid., p. 303; J. Jazwinski, J.-M. Lehn, R. Méric, J.-P. Vigneron, M. Cesario, J. Guilhem, and C. Pascard, Tetrahedron Lett., 1987, 28, 3489.
5 cf. A. Makriyannis and S. Fesik, J. Am. Chem. Soc., 1982, 104, 6462; L. I. Kruse and J. K. Cha, J. Chem. Soc., Chem. Commun., 1982, 1329; J. D. Mersh, J. K. M. Sanders, and S. A. Maitlin, ibid., 1983, 306.

6 D. R. Alston, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1984, 23, 821; H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, ibid., 1986, 25, 487.

Received 19th September 1988; Paper $8 / 03552$ K

